Neisseria lactamica induces anti-Neisseria meningitidis
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Introduction & Aims Methods

Introduction

Colonisation with Neisseria lactamica (Nlac) prevents Neisseria meningitidis (Nmen) colonisation
and disease. If the mechanism underlying this effect was elucidated it could be exploited to

% 31 participants were randomised to receive intra-nasal inoculation with 10° colony-forming units
(CFU) of Nlac (Y92-1009) suspended in 1ml phosphate buffered saline (PBS) (intervention), or
1ml PBS (control).

develop novel strategies to protect against Nmen colonisation and disease. We theorised that an ** Nlac and Nmen colonisation status was assessed at baseline and at 7-, 14- and 28-days post-
adaptive cross-reactive immune mechanism, independent of SBA, may be implicated in this inoculation by culture of oropharyngeal swabs and nasal wash. Nlac colonisation density was
protection and performed a Nlac controlled human infection experiment to test this hypothesis. measured in nasal wash.

Aims

1. To establish if pharyngeal colonisation with Nlac induces Nlac-specific B cell responses that

are cross-reactive with Nmen.

“* Nlac (Y92-1009)-specific and Nmen (H44/76)-specific IgA-secreting and IgG-secreting plasma
cell (Bpas) and IgG memory B cell (Bygy) frequencies were quantified in blood at baseline and
post-inoculation time points using enzyme-linked immunospot assays (ELISpot).

2. To assess whether the magnitude of Nlac-specific B cell responses induced following Nlac * Nlac-specific and Nmen-specific IgG titers were measured in plasma using enzyme-linked
colonisation were associated with Nlac colonisation density. immunosorbent assays (ELISA).

Screening

Assessed for eligibility
(n=50) Ineligible (n=18)

* N. meningitidis colonised
(n=6)

* N. lactamica colonised
(n=2)

* Hb below cut off (n=8)
+ Other reason (n=2)

Eligible (n=32)

Withdrawn prior to
allocation (n=1)

* New immunocompromised
contact (n=1)

v

1* Allocation —1

Allocated to intervention (n=20) Allocated to control (n=11)

! !

Follow-up visits (days 7, 14 & 28 post-inoculation)

' !

Immunological analysis

v ¢

Excluded from immunological analysis Excluded from immunological analysis
(n=3) (n=1)
N. meningitidis colonisation at day 0 *  N. meningitidis colonisation at day 0
(n=1) (n=1)
Not colonised with N. lactamica following
inoculation (n=2)

Analysed (n=17) Analysed (n=10)

Figure 1. Study flow diagram showing allocation to
groups, study completion and participants included in the
Immunological analyses. Hb — haemoglobin concentration
In whole blood.
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Figure 2. Representative examples of IgA and
IgG Bp as and 1IgG Byey ELISpot assays for Nlac-
inoculated and colonised participants. For the IgA-
and IgG-secreting Bp as ELISpot assays (A), 2 x 10°
peripheral blood mononuclear cells (PBMCs) were
seeded in duplicate wells coated with anti-human IgG
or IgA monoclonal antibodies (mAb) (total SFUs),
keyhole limpet haemocyanin (KLH) (negative control),
tetanus toxoid (bystander control), and deoxycholate-
extracted outer-membrane vesicles (dOMV) derived
from both Nlac Y92-1009 (Nlac) and Nmen H44/76
(Nmen). For the 1IgG Bygy ELISpot assay (B), PBMCs
were polyclonally stimulated for 5 days with CPG
DNA, IL-2 and IL-10 prior to seeding into triplicate
wells coated with KLH, anti-human IgG mAb, influenza
haemaglutinin (Flu), Nlac-dOMV and Nmen-dOMV.
Following an 18-hour Incubation, alkaline
phosphatase-conjugated anti-lgA  or  anti-IlgG
secondary polyclonal antibodies were added prior to
development with BCIP substrate. One spot-forming
unit (SFU) was considered representative of one
Bp As/Byen fOr enumeration purposes.
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Figure 3. Colonisation with Nlac induces anti-Nlac and anti-Nmen Bp x5 and Byey responses. PBMCs were derived from Nlac-colonised and
PBS-inoculated participants and assessed by ELISpot for the presence of IgA-secreting (A-D) and IgG-secreting (E-H) Bp ag, and 1gG Byem (I-L),
specific for Nlac Y92-1009-dOMV (A, C, E, G, |, K) and Nmen H44/76-dOMV (B, D, F, H, J, L). Bp a5 and Bygy Were visualised as SFU, having
adjusted for non-antigen-specific SFU by subtraction of SFU enumerated in KLH-coated wells. For Bp o5 data, the highest number of SFU per 2 x
10° PBMCs is shown (day +7-28) for each antigen vs. baseline. Bars indicate median. *P < 0.05, **P < 0.01, **** P < 0.0001 by Wilcoxon matched-
pairs signed rank test (n = 17 Nlac-colonised participants, n = 10 PBS-inoculated participants).
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x] Figure 4. The Magnitude of anti-

Nmen Bp a5 responses is associated
with baseline Bygy responses. (A-B)
Nmen-specific and Nlac-specific IgG-
secreting Bp| As responses were
compared amongst volunteers with (+/+) _;
r%* b and without (+/- or -/-) detectable IgG s

T T | ﬂ Bvem responses to both Nlac (right-filled SN T S
(*) ¢ *) ¢ circles) and Nmen (left-filled circles) at ¢~ Niac CFU m}" nasal wash (Day 28) ———————>

Anti-Nmen IgG Bpas status Anti-Nmen IgG Bpas status

(day 7-28) (day 7-28) baseline. (E-F) Nmen- specific IgG Bygm
frequencies amongst volunteers with (E) and without (F) detectable anti-Nmen IgG-
secreting Bp ag responses, comparing day 0 and day 28 frequencies with the lowest
frequency measured on either day 7 or day 14. (C-D) Increase in anti-Nmen and anti-
Nlac 1gG titre between days 0 and 28 amongst participants with (+) and without (-) a
detectable anti-Nmen IgG-secreting Bp a5 response. * P < 0.05, ™ P < 0.01, ** P <
0.001 by Mann-Whitney test (1) or Kruskal-Wallis test with Dunn’s multiple comparisons
test (#).
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¢ Colonisation with Nlac induces IgA-secreting and IgG-secreting Bp ag and IgG By With

specificity to Nlac and Nmen (Figure 3). Figure 5. Nlac-specific

Bpas responses and
IgG titers are associated
with Nlac colonisation

N W o
a © o
S S o
?°?| | |

* That Nmen-specific IgG Bp as frequencies were higher amongst Nlac colonised
participants where Nlac-specific and Nmen- specific IgG Bygy were both detectable at
baseline (Figure 4A) suggests that Nlac colonisation may have boosted pre-existing density. Day-28 IgG titers
cross-reactive By, responses. This theory is further supported by the observation that | (A-D) and peak IgA-
Nmen-specific 1gG Bygy frequencies reduced amongst Nlac-colonised participants | secreting Bp s responses

where anti-Nmen IgG-secreting By a5 responses were induced (Figure 4E). | rzﬂ.i o (E-F) were plotted against
(+/+) (+/-) or (-/-) . . .
< The observation that anti-Nlac 1gG titers and anti-Nlac IgA-secreting Bp g frequencies Baseline Nmen/Nlaclg ~ N/@C  colonisation density

negatively correlated with Nlac colonisation density (Figures 5C & 5E) suggests that the Buew status (Nlac CFU ml", nasal

magnitude of these responses may play a role in controlling Nlac colonisation density. wash) on days 14 and 28 post-inoculation for each

_ . _ , L , Nlac-colonised participant and correlations assessed
» If the generation of anti-Nmen Bp ag or antibody induced by Nlac colonisation is using Spearman’s Rho (r.) (*P < 0.05). (G) Area under
s — [ n

responsible for the protective effect afforded by Nlac on Nmen then we would predict
protection would only be afforded in those where anti-Nmen responses were induced.
We intend to test this hypothesis using the Nlac controlled human infection model.

(nasal wash
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AUC Nlac CFU ml!

the curve (AUC) Nlac colonisation density calculated
using Nlac CFU ml-' data derived from nasal wash at
days 7, 14 and 28 post-inoculation amongst
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